Lupecki Criterion by Duality
نویسنده
چکیده
A method is presented for proving primality and functional completeness theorems, which makes use of the operation–relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of A only. We show how the method applies for proving SÃlupecki’s classical theorem by generating diagonal relations from each pair of k-tuples.
منابع مشابه
Conjugate convex functions, duality, and optimal control problems I: Systems governed by ordinary differential equations
This paper presents a general and complete duality theory for optimal control of systems governed by linear ordinary differential equations with a convex cost criterion. Existence theorems for optimal control problems are obtained using the duality theory and a direct relationship between duality and Pontryagin's Maximum Principle is exhibited. Finally, applications to decomposition of optimal ...
متن کاملContinuous Convex Sets and Zero Duality Gap for Convex Programs
This article uses classical notions of convex analysis over euclidean spaces, like Gale & Klee’s boundary rays and asymptotes of a convex set, or the inner aperture directions defined by Larman and Brøndsted for the same class of sets, to provide a new zero duality gap criterion for ordinary convex programs. On this ground, we are able to characterize objective functions and respectively feasib...
متن کاملDuality in Distributed-Parameter Control of Nonconvex and Nonconservative Dynamical Systems with Applications
Based on a newly developed canonical dual transformation methodology, this paper presents a potentially useful duality theory and method for solving fully nonlinear distributed-parameter control problems. The extended Lagrange duality and the interesting triality theory proposed recently in finite deformation theory are generalized into nonconvex dissipative Hamiltonian systems. It is shown tha...
متن کاملFolder complexes and multiflow combinatorial dualities By Hiroshi
In multiflow maximization problems, there are several combinatorial duality relations, such as Ford-Fulkerson’s max-flow min-cut theorem for single commodity flows, Hu’s max-biflow min-cut theorem for two-commodity flows, Lovász-Cherkassky duality theorem for free multiflows, and so on. In this paper, we provide a unified framework for such multiflow combinatorial dualities by using the notion ...
متن کاملA Duality Theorem for Plastic Plates
Limit analysis studies the asymptotic behavior of elastic-plastic materials and structures. The asymptotic material properties exist for a class of ductile metals and are designed into optimal structural members such as I-beams and composite plates. The analysis automatically ignores the relatively small elastic deformations. Classical lower and upper bound theorems in the form of inequalities ...
متن کامل